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Overview

This deck of slides goes over asymptotics for extremum estimators
(NLLS and MLE)

The relevant chapter in Hansen is 22, but we give some additional detail
and examples.
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Global and local identification (H22.3)

Consider an estimator of θ0

θ̂ = arg max
θ∈Θ

n−1
n∑

i=1
ρ(Yi, Xi, θ).

This is based on the understanding that

E (ρ(Y, X, θ0)) > E (ρ(Y, X, θ))

for any θ ∈ Θ different from θ0.

This condition is a global identification condition.
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With NLLS we maximize

−n−1
n∑

i=1
(Yi − m(Xi, θ))2

.

For MLE we maximize

n−1ℓn(θ) = n−1
n∑

i=1
log f(Yi|Xi, θ).

In each of these cases we know that θ0 is a global maximizer of the
limit problem.

It need not be the only maximizer.

Local identification is the weaker requirement that the Hessian of the
limit problem is negative definite at θ0, and so the maximum is well
isolated.
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In the NLLS case, local identification is the requirement that

rankE
(

∂m(X, θ0)
∂θ

∂m(X, θ0)
∂θ′

)
= k.

For the linear model this boils down to the usual no-multicolinearity
condition.

Global identification is that

E
(
(Y − m(X, θ))2) = E

(
(Y − m(X, θ0))2)+ E

(
(m(X, θ0) − m(X, θ))2)

> E
(
(Y − m(X, θ0))2)

and so that E
(
(m(X, θ0) − m(X, θ))2) > 0. This happens if and only

if
P(m(X, θ) ̸= m(X, θ0)) > 0

for all θ ̸= θ0 in Θ. In the linear model this is the no-multicolinearity
condition because E

(
(m(X, θ0) − m(X, θ))2) = E((θ−θ0)′XX ′(θ−θ0))

but we know that α′E(XX ′)α > 0 for any α ̸= 0 when E(XX ′) is
positive definite.
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Uniform law of large numbers (H22.5)

Function ρ(x, θ) for θ ∈ Θ (continuous on Θ compact) with
E(supθ∈Θ ρ(X, θ)) < +∞.

A pointwise convergence result (i.e., for any fixed θ ∈ Θ) is

P

(∣∣∣∣∣n−1
∑

i

ρ(Xi, θ) − E(ρ(X, θ))

∣∣∣∣∣ > ϵ

)
< δ, for all n > nθ,

A uniform result is that, for all θ ∈ Θ,

P

(∣∣∣∣∣n−1
∑

i

ρ(Xi, θ) − E(ρ(X, θ))

∣∣∣∣∣ > ϵ

)
< δ, for all n > n,

with n independent of θ.
We write

sup
θ∈Θ

∣∣∣∣∣n−1
∑

i

ρ(Xi, θ) − E(ρ(X, θ))

∣∣∣∣∣ →
p

0

as n → ∞.
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To appreciate the difference take a non-stochastic example:

nθe−nθ

for θ ∈ Θ = [0, 1]. This function is continuous in θ.

For any fixed θ,
nθe−nθ → 0

as n → ∞. (because the exponential term vanishes more quickly than
the linear term grows.)

However, at θ = n−1 the function equals e−1 for any n. Hence,

sup
θ∈Θ

|nθe−nθ| ↛ 0

as n → ∞.

Uniform convergence implies pointwise convergence.
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Argmax theorem and consistency (H22.4)

Let θ0 be globally identified as the solution to

max
θ∈Θ

S(θ), S(θ) = E(ρ(Y, X, θ))

and let θ̂ be the solution to

max
θ∈Θ

Sn(θ), Sn(θ) = n−1
n∑

i=1
ρ(Yi, Xi, θ).

By a uniform law of large numbers,

Sn(θ) →
p

S(θ)

uniformly in θ ∈ Θ.

Then
arg max

θ∈Θ
Sn(θ) = θ̂ →

p
θ0 = arg max

θ∈Θ
S(θ).
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Below is a uniform ε-band around S(θ) in which Sn(θ) must lie with
high probability, and the corresponding interval [θmin, θmax] in which θ̂
must then also lie with high probability.

θmin θ θmax

−1

0

1

2

As n → ∞, the ε-band tightens and so the interval [θmin, θmax] shrinks
to a point. By identification this point must be θ0. As θ̂ ∈ [θmin, θmax]
it must be that θ̂ converges to θ0. 9/ 30



Asymptotic distribution (H22.6)

If ρ is twice continuously-differentiable in θ and S(θ) is not maximized
at the boundary of Θ we have that

∂Sn(θ̂)
∂θ

= ∂Sn(θ0)
∂θ

+ ∂2Sn(θ∗)
∂θ∂θ′ (θ̂ − θ0) = 0

by the first-order condition and a mean-value expansion. We may then
solve for θ̂ − θ0 to obtain

θ̂ − θ0 = −
(

∂2Sn(θ∗)
∂θ∂θ′

)−1
∂Sn(θ0)

∂θ
.

We handle each of the right-hand side terms separately next.
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First, we would like to show that

∂2Sn(θ∗)
∂θ∂θ′ = 1

n

n∑
i=1

∂2ρ(Yi, Xi, θ∗)
∂θ∂θ′ →

p
E
(

∂2ρ(Y, X, θ0)
∂θ∂θ′

)
where θ∗ →

p
θ0.

First,∥∥∥∂2Sn(θ∗)
∂θ∂θ′ − ∂2S(θ0)

∂θ∂θ′

∥∥∥ ≤
∥∥∥∂2Sn(θ∗)

∂θ∂θ′ − ∂2S(θ∗)
∂θ∂θ′

∥∥∥+
∥∥∥∂2S(θ∗)

∂θ∂θ′ − ∂2S(θ0)
∂θ∂θ′

∥∥∥
Continuity of the second derivative of S(θ) together with consistency
of θ∗ implies that ∥∥∥∥∂2S(θ∗)

∂θ∂θ′ − ∂2S(θ0)
∂θ∂θ′

∥∥∥∥ →
p

0

by the continuous mapping theorem.
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Next,∥∥∥∂2Sn(θ∗)
∂θ∂θ′ − ∂2S(θ∗)

∂θ∂θ′

∥∥∥ =
∥∥∥n−1∑n

i=1
∂2ρ(Yi,Xi,θ∗)

∂θ∂θ′ − E
(

∂2ρ(Y,X,θ∗)
∂θ∂θ′

)∥∥∥
≤ supθ∈Θ

∥∥∥n−1∑n
i=1

∂2ρ(Yi,Xi,θ)
∂θ∂θ′ − E

(
∂2ρ(Y,X,θ)

∂θ∂θ′

)∥∥∥
so that we can apply a uniform law of large numbers, provided that
E
(

supθ∈Θ
∂2ρ(Y,X,θ)

∂θ∂θ′

)
< ∞, to obtain that∥∥∥∂2Sn(θ∗)

∂θ∂θ′ − ∂2S(θ∗)
∂θ∂θ′

∥∥∥ →
p

0.

Taken together we have shown that

∂2Sn(θ∗)
∂θ∂θ′ →

p
E
(

∂2ρ(Y, X, θ0)
∂θ∂θ′

)
= Q
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If Q is invertible then we apply the continuous mapping theorem and
find that

√
n(θ̂ − θ0) =

(
−Q−1 + op(1)

)√
n

∂Sn(θ0)
∂θ

.

Next,
√

n
∂Sn(θ0)

∂θ
= 1√

n

n∑
i=1

ρ(Yi, Xi, θ0)
∂θ

→
d

N(0, Ω).

provided that

Ω = E
(

ρ(Yi, Xi, θ0)
∂θ

ρ(Yi, Xi, θ0)
∂θ′

)
exists.

Hence, √
n(θ̂ − θ0) →

d
N(0, Q−1ΩQ−1).

This applies to both NLLS and MLE (and more generally still).
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NLLS (H23.4)

For
S(θ) = −1

2E((Y − m(X, θ))2),

we have
∂S(θ)

∂θ
= E

(
∂m(X, θ)

∂θ
(Y − m(X, θ))

)
,

so that

Ω = var
(

∂m(X, θ0)
∂θ

e

)
= E

(
∂m(X, θ0)

∂θ

∂m(X, θ0)
∂θ′ e2

)
,

and also
Q = −E

(
∂m(X, θ0)

∂θ

∂m(X, θ0)
∂θ′

)
.

Under conditional homoskedasticity, E(e2|X) = σ2, Ω = −Q σ2 and
the asymptotic variance simplifies to

σ2 Q−1.

Compare all this to OLS and GLS. 14/ 30



Variance estimation (H23.5)

We estimate the asymptotic variance Q−1ΩQ−1 by the obvious plug-in
estimator that uses

Q̂ = − 1
n

n∑
i=1

∂m(Xi, θ̂)
∂θ

∂m(Xi, θ̂)
∂θ′

and

Ω̂ = 1
n

n∑
i=1

∂m(Xi, θ̂)
∂θ

∂m(Xi, θ̂)
∂θ′ ê2

i

for êi = Yi − m(Xi, θ̂).

This is the analog of the usual robust variance-covariance matrix in the
linear model.
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MLE

The likelihood case has

S(θ) = E (log f(Y |X, θ)) .

The relevant derivatives are

∂S(θ)
∂θ

= E
(

∂ log f(Y |X, θ)
∂θ

)
, Q = E

(
∂2 log f(Y |X, θ)

∂θ∂θ′

)
,

and

Ω = var
(

∂ log f(Y |X, θ0)
∂θ

)
= E

(
∂ log f(Y |X, θ0)

∂θ

∂ log f(Y |X, θ0)
∂θ′

)
.

In this case we can use the information equality to achieve an important
simplification.
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Information inequality

The likelihood problem is fully parametric. For any function φ let

Eθ(φ(Y, X, θ)|X = x) =
∫

φ(Y, X, θ) f(y|x, θ) dy.

Note that
log f(y|x, θ)

∂θ
= 1

f(y|x, θ)
∂f(y|x, θ)

∂θ
. (1)

Therefore,

Eθ

(
∂ log f(Y |X, θ)

∂θ

∣∣∣∣X = x

)
=
∫ ( 1

f(y|x, θ)
∂f(y|x, θ)

∂θ

)
f(y|x, θ) dy

=
∫

∂f(y|x, θ)
∂θ

dy

= ∂

∂θ

∫
f(y|x, θ) dy = 0

(provided that the support of f does not change with θ, which we will
use as a regularity condition.)
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Now we can differentiate the condition∫
∂ log f(y|x, θ)

∂θ
f(y|x, θ) dy = 0

with respect to θ to obtain∫
∂2 log f(y|x, θ)

∂θ∂θ′ f(y|x, θ) + ∂ log f(y|x, θ)
∂θ

∂f(y|x, θ)
∂θ′ dy = 0.

Using Eq. (1) this gives the identify

−
∫ ∂2 log f(y|x,θ)

∂θ∂θ′ f(y|x, θ) dy =
∫ ∂ log f(y|x,θ)

∂θ
∂ log f(y|x,θ)

∂θ′ f(y|x, θ) dy.

Both sided of this equation are expectations. Moreover,

−Q = Ω.

This is the information equality.
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We call ∂ log f(y|x, θ)/∂θ the score.

The variance of the score, Ω, is called the information.

The asymptotic variance of the MLE is thus equal to the inverse of the
information matrix.
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Classical linear regression

Recall the linear model

Y |X = x ∼ N(x′β, σ2).

Here, the score for β was (at true values)

X(Y − X ′β0)
σ2

0
= Xe

σ2
0

and so
Ω = E(XX ′)

σ2
0

.

Furthermore, the Hessian matrix for β was

−XX ′

σ2

so that, clearly,

Q = −E(XX ′)
σ2

0
.
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Poisson model (H26.11)

For the Poisson model with conditional mean and variance exp(X ′β)
the score was

X(Y − exp(X ′β))

which, has variance

Ω = E(XX ′var(Y |X)) = E(XX ′ exp(X ′β0)) = −Q.

Here the mean-variance equality embedded in the poisson distribution
is important.

Relaxing this restriction to allow for over/under dispersion leads to
negative binomial models.
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Logit (H25.7)

The binary-choice logit model has a simpler form than the probit model
because, with

F (u) = 1
1 + exp(−u) ,

it is easy to see that the associated density is

F ′(u) = exp(−u)
(1+exp(−u))2 = 1

1+exp(−u)
exp(−u)

1+exp(−u) = F (u)(1 − F (u)).

Then, recall that the log-pmf is

Y log(F (X ′θ)) + (1 − Y ) log(1 − F (X ′θ)).
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The score, which is,

X F ′(X ′θ)
(

Y
F (X′θ) − (1−Y )

1−F (X′θ)

)
= XF ′(X ′θ) Y −F (X′θ)

F (X′θ) (1−F (X′θ)) ,

thus simplifies to just
X(Y − F (X ′θ)),

which clearly has mean zero and variance

Ω = E(XX ′F ′(X ′θ0)) = −Q

at the truth.

23/ 30



Variance estimation

Like before we can estimate the asymptotic variance Q−1ΩQ−1 by the
obvious plug-in estimator that uses

Q̂ = 1
n

n∑
i=1

∂2 log f(Yi|Xi, θ̂)
∂θ∂θ′

and

Ω̂ = 1
n

n∑
i=1

∂ log f(Yi|Xi, θ̂)
∂θ

∂ log f(Yi|Xi, θ̂)
∂θ′ .

The information identify also justifies and estimator based only on one
of the two. Some software programs use −Q̂−1 as the default variance
estimator because this quantity has usually already been calculated in
the optimization of the likelihood (recall Newton’s algorithm), while Ω̂
requires an additional step.
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Hypothesis testing

We can follow the Wald principle in exactly the same way as before.

We have √
n(θ̂ − θ0) →

d
N(0, Vθ)

and so
n (θ̂ − θ0)′V̂ −1

θ (θ̂ − θ0) →
d

χ2
k.

Tests about nonlinear transformation of θ0 follow in the same way by
a delta-method argument.
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Asymptotic efficiency

Consider a parametric problem with parameter θ and a random sample
Z1, . . . , Zn.

Suppose that θ̂ is unbiased for θ. (Bias can be accommodated at the
expense of some additional notation.)

Then
Eθ(θ̂ − θ) = 0.

Moreover,∫∫
· · ·
∫

(θ̂(z1, z2, . . . , zn) − θ)
n∏

i=1
f(zi, θ) dz1dz2 . . . dzn = 0

holds for every θ.
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The derivative of the expression under the integral is

(θ̂(z1, z2, . . . , zn) − θ)
∂
∏n

i=1 f(zi, θ)
∂θ

−
n∏

i=1
f(zi, θ).

This gives∫
· · ·
∫

(θ̂(z1, z2, . . . , zn) − θ)
∂
∏n

i=1 f(zi, θ)
∂θ

dz1 . . . dzn = 1

because
∫

· · ·
∫ ∂
∏n

i=1
f(zi,θ)

∂θ dz1 . . . dzn = 1.
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Further, observe that
n∑

i=1

∂ log f(zi, θ)
∂θ

=
n∑

i=1

1
fθ(zi, θ)

∂f(zi, θ)
∂θ

=
n∑

i=1

(∏
j ̸=i f(zj , θ)∏

j f(zj , θ)

)
∂f(zi, θ)

∂θ

=
∑n

i=1
∏

j ̸=i f(zj , θ) ∂f(zi,θ)
∂θ∏

j f(zj , θ) =
∂
∏

i
f(zi,θ)

∂θ∏
j fθ(xj)

so that

∂
∏n

i=1 f(zi, θ)
∂θ

=
(

n∑
i=1

∂ log f(zi, θ)
∂θ

)  n∏
j=1

f(zj , θ)

 .
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Therefore, our unbiasedness condition implies that the integral∫
..
∫

(θ̂(z1, . . . , zn) − θ)
(∑n

i=1
∂ log f(zi,θ)

∂θ

) (∏n
j=1 f(zj , θ)

)
dz1..dzn

must equal one. But the integral is equal to

E

(
(θ̂ − θ)

(
n∑

i=1

∂ log f(Zi, θ)
∂θ

))
= cov

(
θ̂,

n∑
i=1

∂ log f(Zi, θ)
∂θ

)

and so, by Cauchy-Schwarz,

12 = cov
(

θ̂,

n∑
i=1

∂ log f(Z, θ)
∂θ

)2

≤ var
(

θ̂
)

n var
(

∂ log f(Z, θ)
∂θ

)
.

Hence,

var
(

θ̂
)

≥ Ω−1

n
.
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Achieving the bound is not possible for a given n in general.

However, the MLE achieves it as n → ∞.

Henc, MLE is asymptotically efficient.

This result uses the information equality, which requires correct speci-
fication of the likelihood function.
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